
A REPORT ON DEEP COMPRESSION: COMPRESSING DEEP NEURAL

NETWORKS WITH PRUNING, TRAINED QUANTIZATION

AND HUFFMAN CODING

MD. Muzakker Hossain, 18-37801-2; Zahin Awosaf, 18-37064-1; MD. Loton, 18-37583-1.

1. INTRODUCTION:

Neural networks are computer systems of
interconnected nodes that act just like human brain
neurons. Using algorithms, they can recognize hidden
patterns and correlations in raw data, cluster and
classify it, and – over time – continuously learn and
improve [2]. The applications of neural networks are
widely used nowadays. For example, suppose you are
visiting Russia and saw a road sign but couldn’t
figure out the meaning but with help of google
translation you can easily find out the meaning and it
is an example of many applications of neural
networks. But the implication of neural networks
requires heavy datasets and storage space. For
example, a dataset VGG-16 requires storage capacity
of 552 MB which makes it difficult to deploy neural
networks on different embedded systems and mobile
networks. To resolve this issue “Deep Compression”
is introduced. Deep Compression is a combination of
three series data processing elements. Firstly, a
network pruning is performed upon the networks and
it can reduce the number of connections by 9x to 13x.
Then, network quantization and weight sharing
further compresses the pruned network by reducing
the number of bits that represent each connection
from 32 to 5 which reduces the weight by 27x to 31x.
Finally, with the help of Huffman Coding the weights
and index are encoded which improves the
compression rate by 35x to 49x. This enormous
compression rate doesn’t only resolves the storage
issue but also reduces energy consumption without
any loss of accuracy. For example, the dataset VGG-
16 which requires 552 MB of storage capacity can be
reduced to 11.3 MB meaning the networks can be
implemented into SRAM cache rather than DRAM
memory which will be a perfect fitting into
embedded systems and mobile networks.

2. TECHNIQUES PERFORMED:

The three staged pipeline to attain deep compression
are – Network Pruning, Trained Quantization and
Huffman Coding.

2.1 NETWORK PRUNING:

Network pruning is a common approach to
reducing a heavy network by minimizing
redundancy throughout the heavy network to
achieve a light-weight network. In this
method, in order to achieve comparable
performance with reduced parameters, a
complex over-parameterized network is first
trained, then pruned is done based on certain
criteria and finally fine-tuned.

2.2 TRAINED QUANTIZATION:

Network quantization is carried out to
further simplify the pruned network by
limiting the amount of effective weights that
need to be processed by sharing the same
weight with multiple connections, and then
fine-tuning those shared weights, resulting
in a substantial reduction in memory
requirements and computational costs.
To calculate the compression rate, given k
clusters, only log2(k) bits is needed to
encode the index. In general, for a network
with n connections and each connection is
represented with b bits [1], constraining the
connections to have only k shared weights
will result in a compression rate of:

For example, for the weights of a single
layer neural network with four input units
and four output units, there are 4x4 = 16
weights originally but there are only 4
shared weights: similar weights are grouped
together to share the same value [1].
Originally 16 weights must be stored where
each has 32 bits, now it is possible to store
only 4 effective weights, each has 32 bits,
along with 16 2-bit indices giving a
compression rate of 16*32 / (4*32 + 2*16) =
3.2 = 3.2.

2.3 HUFFMAN CODING:

Huffman code is a special type of optimal
prefix code widely used to compress lossless
data. It uses variable-length codewords to
encode source symbols. The table is derived
from the occurrence probability for each
symbol, where fewer bits represent more
common symbols. In the datasets the
probability distribution of quantized weights
and the sparse matrix index of the fully
connected layer are biased around the two
peaks. Experiments show that Huffman
coding these non-uniformly distributed
values saves 20% – 30% of network storage
[1].

3. EXPERIMENTS:

To validate the hypothesis the researchers
experimented on four different datasets of different
network architecture. Two of them were selected
from MNIST and others were selected from
ImageNet datasets. The first experiment was
conducted on MNIST dataset with LeNet-300-100
and LeNet-5 network where LeNet-300-100 is a fully
connected network with two hidden layers with 300
and 100 neurons each and LeNet-5 is a convolutional
network that has two convolutional layers with two
fully connected layers. The experiment shows that
the compression pipeline can save 35x to 49x
parameter storage with no loss of accuracy. The
weights of LeNet-300-100 was 266K before the deep
compression, after pruning (P) the weights reduced to
8%, then further reduced to 3.1% after Pruning +

Quantization (P+Q) and finally Huffman coding
(P+Q+H) gave a marginal gain by reducing it to
2.49%. For LeNet-5 the initial weights were 431K,
after compressing the three staged reduction were (P
= 8%), (P+Q) = 3.05% and finally (P+Q+H) =
2.55%. Most of the saving comes from pruning and
quantization (compressed 32x) and Huffman coding
contributed a marginal gain (compressed 40x) [1].
The research was further experimented with
ImageNet ILSVRC-2012 datasets which has 1.2M
training examples and 50k validation examples.
AlexNet Caffe model was used as a reference model
of having 61M parameters. After applying Deep
Compression (P+Q+H) it reduced to 2.88% of its
original size with a promising result of top-1
accuracy of 57.2% and top-5 accuracy of 80.3%.
AlexNet's performance inspired researchers to apply
the compression technique to larger and newer
networks. VGG-16 networks has far more
convolutional with only three fully-connected layers.
To realize a substantial reduction in the number of
effective weights, researchers adopted similar
methods and actively compressed both convolutional
and fully-connected layers. Until compression, the
VGG-16 had a weight of 138M and was drastically
reduced to 2.05 percent, which is 49 times the actual
size. The initial parameter size of 552 MB was then
reduced to 11.3 MB, which means that it is compact
enough to fit into the SRAM on-chip, removing the
need to store the model in energy-consuming DRAM
memory.

4. DISCUSSION:

4.1 PRUNNING AND QUANTIZATION

WORKING TOGETHER:

The experimental data for accuracy vs.
compression rate under different
compression methods shows that pruning
and quantization works better when
combined than being applied individually.
The compression rates were about 13% and
over 20% for pruning and quantization
respectively, but when they were combined
the compression rate drops remarkably to
7%. Question may arise about the distortion
of bits while doing quantization as pruning
reduces the number of parameters from the

weights. But the experiment result shows
that the accuracy rate remains same for
quantization with or without pruning the
networks. Moreover with the help of
pruning the numbers of parameters are
reduced enormously which shrinks the
massive weights of the networks. On pruned
networks, quantization works well because
unpruned AlexNet has 60 million weights to
quantify, while pruned AlexNet has just 6.7
million weights to quantify. Provided the
same number of centroids, there is less error
in the latter.

4.2 SPEED UP & ENERGY EFFICIENCY:

The main aim of this compression technique
is to fit the immensely larger neural
networks into different embedded system
and mobile networks. The primary focus is
on latency-based mobile applications that
require real-time inference along with the
connection between embedded systems. To
benchmark the performance and energy
efficiency of the compressing technique, it
was compared in three different hardware
systems such as, the NVIDIA GeForce GTX
Titan X and the Intel Core i7 5930K as
desktop processors and NVIDIA Tegra K1
as mobile processor[1]. They obtain 3x to 4x
speed over the dense network as the pruned
networks have smaller memory and mitigate
the data transfer overhead, particularly for
large matrices that can not fit into the
caches. To find out the energy efficiency the
researchers multiplied power consumption
with computation time to get energy
consumption, then normalized it to CPU and
got 3x to 7x less energy consumption for
pruned networks.

4.3 RATION OF WEIGHTS, INDEX &
CODEBOOK

Comparison between different compression
techniques such as, Baseline Caffemodel
(BVLC), Fastfood-32-AD, Fastfood-16-AD,
Collins & Kohli, SVD, Pruning, Pruning +
Quantization and Deep Compression

(Pruning + Quantization + Huffman Coding)
were performed on AlexNet where the Deep
Compression gave the best result of 35x
reduced size and the parameters were down
to 6.9MB where only Pruning +
Quantization were 27x of compression rate
with parameters size of 8.9MB. The Deep
Compression performed better with a
negligible 1% accuracy loss.

5. FUTURE SCOPE & CONCLUSION:

As some libraries do not support indirect matrix entry
lookup (for which quantization with weight sharing is
not applicable) the fully advantage of Deep
Compression may not be availed. To solve this issue,
either a software solution of writing customized GPU
kernels that support this indirect matrix entry or a
hardware solution of building custom ASIC
architecture is required. In this way an energy
domination by on-chip SRAM access instead of off-
chip DRAM access can be expected. Deep
Compression is a promising compression technique
that makes it easier for mobile applications to use
complex neural networks where application size and
download bandwidth are limited.

 REFERENCES:

[1] Han, S., Mao, H. and Dally, W.J., 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and Huffman
coding. arXiv preprint arXiv:1510.00149.

[2] “Neural Networks: What they are and why they
matter”, [online], Available:
https://www.sas.com/en_us/insights/analytics/neural-
networks

 [3] Simonyan, Karen and Zisserman, Andrew. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

