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1. INTRODUCTION: 

Neural networks are computer systems of 
interconnected nodes that act just like human brain 
neurons. Using algorithms, they can recognize hidden 
patterns and correlations in raw data, cluster and 
classify it, and – over time – continuously learn and 
improve [2]. The applications of neural networks are 
widely used nowadays. For example, suppose you are 
visiting Russia and saw a road sign but couldn’t 
figure out the meaning but with help of google 
translation you can easily find out the meaning and it 
is an example of many applications of neural 
networks. But the implication of neural networks 
requires heavy datasets and storage space. For 
example, a dataset VGG-16 requires storage capacity 
of 552 MB which makes it difficult to deploy neural 
networks on different embedded systems and mobile 
networks. To resolve this issue “Deep Compression” 
is introduced. Deep Compression is a combination of 
three series data processing elements. Firstly, a 
network pruning is performed upon the networks and 
it can reduce the number of connections by 9x to 13x. 
Then, network quantization and weight sharing 
further compresses the pruned network by reducing 
the number of bits that represent each connection 
from 32 to 5 which reduces the weight by 27x to 31x. 
Finally, with the help of Huffman Coding the weights 
and index are encoded which improves the 
compression rate by 35x to 49x. This enormous 
compression rate doesn’t only resolves the storage 
issue but also reduces energy consumption without 
any loss of accuracy. For example, the dataset VGG-
16 which requires 552 MB of storage capacity can be 
reduced to 11.3 MB meaning the networks can be 
implemented into SRAM cache rather than DRAM 
memory which will be a perfect fitting into 
embedded systems and mobile networks. 

 

2. TECHNIQUES PERFORMED: 

The three staged pipeline to attain deep compression 
are – Network Pruning, Trained Quantization and 
Huffman Coding. 

2.1 NETWORK PRUNING: 
 
Network pruning is a common approach to 
reducing a heavy network by minimizing 
redundancy throughout the heavy network to 
achieve a light-weight network. In this 
method, in order to achieve comparable 
performance with reduced parameters, a 
complex over-parameterized network is first 
trained, then pruned is done based on certain 
criteria and finally fine-tuned. 
 

2.2 TRAINED QUANTIZATION: 
 
Network quantization is carried out to 
further simplify the pruned network by 
limiting the amount of effective weights that 
need to be processed by sharing the same 
weight with multiple connections, and then 
fine-tuning those shared weights, resulting 
in a substantial reduction in memory 
requirements and computational costs. 
To calculate the compression rate, given k 
clusters, only log2(k) bits is needed to 
encode the index. In general, for a network 
with n connections and each connection is 
represented with b bits [1], constraining the 
connections to have only k shared weights 
will result in a compression rate of: 

 



For example, for the weights of a single 
layer neural network with four input units 
and four output units, there are 4x4 = 16 
weights originally but there are only 4 
shared weights: similar weights are grouped 
together to share the same value [1].  
Originally 16 weights must be stored where 
each has 32 bits, now it is possible to store 
only 4 effective weights, each has 32 bits, 
along with 16 2-bit indices giving a 
compression rate of 16*32 / (4*32 + 2*16) = 
3.2 = 3.2. 
 

2.3 HUFFMAN CODING: 
 
Huffman code is a special type of optimal 
prefix code widely used to compress lossless 
data. It uses variable-length codewords to 
encode source symbols. The table is derived 
from the occurrence probability for each 
symbol, where fewer bits represent more 
common symbols. In the datasets the 
probability distribution of quantized weights 
and the sparse matrix index of the fully 
connected layer are biased around the two 
peaks. Experiments show that Huffman 
coding these non-uniformly distributed 
values saves 20% – 30% of network storage 
[1]. 
 
 

3. EXPERIMENTS: 
 
To validate the hypothesis the researchers 
experimented on four different datasets of different 
network architecture. Two of them were selected 
from MNIST and others were selected from 
ImageNet datasets. The first experiment was 
conducted on MNIST dataset with LeNet-300-100 
and LeNet-5 network where LeNet-300-100 is a fully 
connected network with two hidden layers with 300 
and 100 neurons each and LeNet-5 is a convolutional 
network that has two convolutional layers with two 
fully connected layers. The experiment shows that 
the compression pipeline can save 35x to 49x 
parameter storage with no loss of accuracy. The 
weights of LeNet-300-100 was 266K before the deep 
compression, after pruning (P) the weights reduced to 
8%, then further reduced to 3.1% after Pruning + 

Quantization (P+Q) and finally Huffman coding 
(P+Q+H) gave a marginal gain by reducing it to 
2.49%. For LeNet-5 the initial weights were 431K, 
after compressing the three staged reduction were (P 
= 8%), (P+Q) = 3.05% and finally (P+Q+H) = 
2.55%. Most of the saving comes from pruning and 
quantization (compressed 32x) and Huffman coding 
contributed a marginal gain (compressed 40x) [1].  
The research was further experimented with 
ImageNet ILSVRC-2012 datasets which has 1.2M 
training examples and 50k validation examples. 
AlexNet Caffe model was used as a reference model 
of having 61M parameters. After applying Deep 
Compression (P+Q+H) it reduced to 2.88% of its 
original size with a promising result of top-1 
accuracy of 57.2% and top-5 accuracy of 80.3%. 
AlexNet's performance inspired researchers to apply 
the compression technique to larger and newer 
networks. VGG-16 networks has far more 
convolutional with only three fully-connected layers. 
To realize a substantial reduction in the number of 
effective weights, researchers adopted similar 
methods and actively compressed both convolutional 
and fully-connected layers. Until compression, the 
VGG-16 had a weight of 138M and was drastically 
reduced to 2.05 percent, which is 49 times the actual 
size. The initial parameter size of 552 MB was then 
reduced to 11.3 MB, which means that it is compact 
enough to fit into the SRAM on-chip, removing the 
need to store the model in energy-consuming DRAM 
memory. 

 
4. DISCUSSION: 

  
4.1 PRUNNING AND QUANTIZATION 

WORKING TOGETHER:  
 
The experimental data for accuracy vs. 
compression rate under different 
compression methods shows that pruning 
and quantization works better when 
combined than being applied individually. 
The compression rates were about 13% and 
over 20% for pruning and quantization 
respectively, but when they were combined 
the compression rate drops remarkably to 
7%. Question may arise about the distortion 
of bits while doing quantization as pruning 
reduces the number of parameters from the 



weights. But the experiment result shows 
that the accuracy rate remains same for 
quantization with or without pruning the 
networks. Moreover with the help of 
pruning the numbers of parameters are 
reduced enormously which shrinks the 
massive weights of the networks. On pruned 
networks, quantization works well because 
unpruned AlexNet has 60 million weights to 
quantify, while pruned AlexNet has just 6.7 
million weights to quantify. Provided the 
same number of centroids, there is less error 
in the latter. 
 

4.2 SPEED UP & ENERGY EFFICIENCY: 
 
The main aim of this compression technique 
is to fit the immensely larger neural 
networks into different embedded system 
and mobile networks. The primary focus is 
on latency-based mobile applications that 
require real-time inference along with the 
connection between embedded systems. To 
benchmark the performance and energy 
efficiency of the compressing technique, it 
was compared in three different hardware 
systems such as, the NVIDIA GeForce GTX 
Titan X and the Intel Core i7 5930K as 
desktop processors and NVIDIA Tegra K1 
as mobile processor[1]. They obtain 3x to 4x 
speed over the dense network as the pruned 
networks have smaller memory and mitigate 
the data transfer overhead, particularly for 
large matrices that can not fit into the 
caches. To find out the energy efficiency the 
researchers multiplied power consumption 
with computation time to get energy 
consumption, then normalized it to CPU and 
got 3x to 7x less energy consumption for 
pruned networks.  
 

4.3 RATION OF WEIGHTS, INDEX & 
CODEBOOK 
 
Comparison between different compression 
techniques such as, Baseline Caffemodel 
(BVLC), Fastfood-32-AD, Fastfood-16-AD, 
Collins & Kohli, SVD, Pruning, Pruning + 
Quantization and Deep Compression 

(Pruning + Quantization + Huffman Coding) 
were performed on AlexNet where the Deep 
Compression gave the best result of 35x 
reduced size and the parameters were down 
to 6.9MB where only Pruning + 
Quantization were 27x of compression rate 
with parameters size of 8.9MB. The Deep 
Compression performed better with a 
negligible 1% accuracy loss. 
 

5. FUTURE SCOPE & CONCLUSION: 

As some libraries do not support indirect matrix entry 
lookup (for which quantization with weight sharing is 
not applicable) the fully advantage of Deep 
Compression may not be availed. To solve this issue, 
either a software solution of writing customized GPU 
kernels that support this indirect matrix entry or a 
hardware solution of building custom ASIC 
architecture is required. In this way an energy 
domination by on-chip SRAM access instead of off-
chip DRAM access can be expected. Deep 
Compression is a promising compression technique 
that makes it easier for mobile applications to use 
complex neural networks where application size and 
download bandwidth are limited. 
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